Indian Statistical Institute, Bangalore

B. Math. Third Year

Second Semester - Differential Equations

Mid-Semester Exam Durat

Duration : 3 hours

Date : Feb 22, 2017

Answer any five, each question carries 8 marks, total marks: 40

1. (a) Find a solution of $xy' = y + 2xe^{\frac{-y}{x}}$ (Marks: 3).

(b) Prove that Mdx + Ndy = 0 is exact if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and use it to solve $(\sin x \sin y - xe^y)dy = (e^y + \cos x \cos y)dx$.

2. (a) Let y_1 and y_2 be two linearly independent solutions of y'' + P(x)y' + Q(x)y = 0on [a, b]. Show that $P = \frac{y_2y''_1 - y_1y''_2}{W(y_1, y_2)}$ and $Q = \frac{y'_1y''_2 - y''_1y'_2}{W(y_1, y_2)}$ (Marks: 5).

(b) Let y and y' be linearly independent solutions of y'' + P(x)y' + Q(x)y = 0on [a, b]. Suppose y'' is also a solution. Prove that P and Q are constants.

3. (a) Reduce $x^2y'' + xpy' + qy = 0$ to a linear equation with constant coefficients and use it to solve $x^2y'' + 2xy' - 12y = 0$.

(b) Solve $y'' + y = 2\cos x$ (Marks: 3).

- 4. (a) Solve the system x' = 3x 4y and y' = x y (Marks: 4).
 (b) Let y be a nonzero solution of y" + P(x)y' + Q(x)y = 0 on [a, b]. Prove that {x ∈ [a, b] | y(x) = 0} is a finite set.
- 5. (a) Solve (1+x)y' = py, y(0) = 1 and prove $(1+x)^p = 1 + \sum_{n \ge 1} \frac{p(p-1)\cdots(p-(n-1))}{n!}x^n$ for |x| < 1 (*Marks: 4*).
 - (b) Solve $(1 + x^2)y'' + 2xy' 2y = 0$ in terms of power series of x.
- 6. (a) Solve y" 2xy' + 2py = 0 and show that any solution is analytic on R.
 (b) Solve y" + xy = 0 using power series method (Marks: 4).
- 7. (a) Find two independent Frobenius series solutions of 2xy'' + (3-x)y' y = 0. (b) Prove that $\cos x = \lim_{a \to \infty} F(a, a, \frac{1}{2}, \frac{-x^2}{4a^2})$ (*Marks: 3*).